OUTLINES OF A NEW METHOD FOR INFANT MUSIC TEACHING

© Miklós BURIÁN
(Kecskemét College, Kecskemét, Hungary)

burian.miklos@gmail.com

This paper is about a research of music teaching. As there have been changes of the values of school subjects because of globalisation, there are some subjects overestimated (the ones of natural sciences, techniques and foreign languages), and others, like the ones of arts, have been underestimated. Children at school do not have access to ‘good’ music. Their teachers in the first grade regarding music teaching are mostly under-qualified. Children listen to pop music at singing lessons. Kodály’s principles, to give children only good music which would make their soul safe and sound seem to have lost their appreciation. This research tries to give some answers to the problems while finding new ways at music teaching, not denying Kodály’s principals, which target to find pleasure in music to form a harmonised one for life. The method of this experiment used virtual polyphony with sound planes to provide children wider chance for creating and improvising music on their own. This and other exercises like using meditative states (musical stillness, clusters), and some forms of ritual dances, shaman’s drumming (ecstasy) helped children a lot to get into a flow or catharsis. To take children into an other mind state was not a selfish goal; we wanted them to enjoy a euphoria practising music so that they would return to singing lessons with a great desire. These experiments provide some statistical measurements.

Keywords: polyphony, creativity, improvisation, cluster, catharsis

Do children also lose faith in the Kodály-method? - In our primary schools there is a decline in interest in singing lessons. The ‘Kodály concept’ is beginning to lose its efficiency. However, the main cause of this is not in the lack of efficacy of the basic principles of Kodály, but it is that teachers seem to lose their faith in it, or drive children in exaggerated exercises to get rigid success with their teaching methods. Neither of them will make children enthusiastic about music lessons. This symptom can be observed by Katalin Nagy. (Attitude test of primary school children – it is not published.) The problem was also to be seen earlier by some eminent pedagogues who tried to install some innovations in singing lessons with more or less success (Dimény,1981; Laczó, 1997; L. Nagy, Katalin, 1997; Sáry, 2000).

Recognizing the problem, we started innovations first in kindergarten music from 1980. Our next experiments were spread out to primary school teaching from 2002. There were new procedures introduced in three primary schools for the first and second forms.

Our main goal was to change children’s attitude towards singing lessons. In the hypothesis we composed our conditions with a hope to meet our target. Several of them are listed down below.
Global aim

To establish musical processes (pre-recorded and live) in which creation (creativity-improvisation and originality) comes about, and in which the emotional atmosphere (subjective) engendered by the sound material (objective) rises through ecstasy to a higher mind-state and to intermittent flashes of catharsis (pedagogical aspect).

Concrete aim and hypothesis

Whereas homophony responds to a succession of sounds, polyphony represents simultaneity (the totality of all sound-planes) and the inter-reaction of simultaneity with succession, the metric with a metric, balance with imbalance, dissonance with consonance.

During these experiments, there is a hope that children are growing in their acceptance towards singing lessons as well their teacher in general which then inspires them to take part in and help create musical processes. Supposedly this work also develops children’s intelligence, in terms of emotion (musical taste) and social (communal) competencies.

Description of the experiment

To verify our hypothesis we conducted our experiment in three primary schools in the town, Kecskemét. (South Hungary, Kodály’s hometown). We chose the groups at random and checked to make sure that none of them had previously participated in a special music course.

The first group (Magyar Ilona primary school) had 17 participants (7 boys and 10 girls). The second group (Petőfi Sándor primary school) had 16 participants (7 boys and 9 girls). The third group (Lánchíd primary school) had 23 participants (12 boys and 11 girls).

The experiment lasted from 2002 to 2005, with students in the first and second school years being led by the author of this study. The steps of the programme were realized in 30 lessons. The children included in this programme met every other week, and the number of the lessons lasted the stated period of two years.

The teaching methods followed traditional teaching methods: frontal, group divisions, individual work. The exercises were formulated mostly by the teacher, specially the frames of the tasks. Of course, the content was carried out by the children. In general the methods did not follow a ‘step by step’ procedure, only when we prepared a real polyphony of a round. We had to precede it with some introductory exercises.

The bulk of the experimental material is based on kindergarten songs and ditties. Additional musical exercises were taken from the text books of the children, which we incorporated into our programme of learning after hearing.

Music listening material was a particular selection, based on the most attractive pieces from music history (e.g. pieces from Verdi, Wagner Schubert, Bartók and Kodály). We also tried to shift music reading and writing to the third year as had been done by Laczó, Z. and Mrs. Csillag, J. earlier (Laczó, 1998), who had made their programme while taking the principles of some significant psychologists into consideration (Piaget): e.g. that children at the age of 6-8 are not developed enough to share many abstract ideas. As children in the first class are burdened with math, musical writing and reading would be an additional load on them. We could not achieve this because of a great resistance on the part of the form masters, and so we agreed to hold programme lessons only every other week.

In 2010 we installed a control experiment with five experimental and five control groups. One of the experimental groups was identical with the one which took part in the first experiment in 2002-2005. We do not want to go further details because the conditions were similar to the first one with the exception of the Likert test taken
up in all groups. We worked out new questions because of the control groups and reduced them for 15.

The population of the groups were 16-30, and no one of them participated in special music training. Finally we took averages of the positive and negative values, not like in the first experiment where children were measured according to their own positive and negative choices (between -7 to +7). We have been working with experimental groups since ending the first experiment.

Methods of the experimental procedure

Our methodology was goal dependant and ‘holistic’ in this regard: it worked with ordered and unordered material at the same time and tried to capture the music in its totality (ordered-unordered, finite-infinite, regular-irregular, etc.).

The methodology employed in the experiment initiated firstly, the inspired situations of music history’s ‘innovating’ revolutionaries and secondly, what seemed to their contemporaries to be deviant innovations; thirdly, the possible methods of achieving the catharsis considered to be the ‘starting point’ of all art.

The method worked with complex materials and pre or virtual polyphony, in which the richness of the permutation possibilities inspired creativity. The complex construction imitated the synthesis of defined and non-defined music (symmetry-asymmetry, balance-imbalance, metric-ametric, dissonant-consonant), in which the polar elements of complexity appear in a chaotic and ordered context simultaneously.

The richness of the changes of roles and functions developed not only the children’s creativity in general, but also the spectrum of their musical creativity.

The emotional grouping of sound and the music created imitated the deepest layers of mental and spiritual disposition, and their nurturant (fear, sorrow, happiness, gaiety, etc.).

The integration of collective work into individual work (individual reproductive or creative productions) and vice-versa brought with it not only the joy of working collectively but also the responsibility of integrating individual participation into the collective (individual improvisations on instruments related to a given sound material, textual compositions, story-telling, exercises in conducting).

The method laid great stress on assimilation and integration of the improvised use of chiming (percussion) instruments into ‘great pieces of music reproduced by machine’ (record player, CD-player, etc.), and also on the experience of playing a role (member of a large orchestra): all this realised not just at the listening level (partly passive), but at the creative level of active music-making.

The method did not preclude but rather inspired individual interpretations of great pieces of music in graphic forms (drawings) or in moving form (dance or choreography).

The method, if not in an explicit way, also leads children to discover the achievements, complexity and meta-character of today’s music. It also leads them to work out the inner motion of a cluster built from vowel-sounds, so that children become accustomed to the sound-world of contemporary music, experiencing and accepting it.

The method makes use of the musical ‘stillness’ because we think it nears the participant to a meditative state, that is, opens his or her mind to subconscious information and experiences. As Aristotle writes: ‘Pleasure can be found rather in stillness than in movement’ (Aristotle, 1997:205).

Complements to the method

We lay great stress on developing children’s fantasy. Connecting with music listening they might tell their impressions. We think it is important for a child of 9-10 to be able to form his or her thoughts. This would also occur with tale improvisations which are normally bound to some music (background or ‘guiding’ music). We think, musical instruments like the drum, triangle, metallofon, etc. are
very interesting for children. They like examining them, they are even fond of playing on them.

We applied tale-narrating in more parts too. It means that the children (2 or 4) told a well-known tale starting at different times, or they found out something from a well known tale, maybe they found out the whole tale themselves. They can tolerate each other very well, the problem of which appears in an experimental programme of Yehudi Menuhin, (Yehudi Menuhin MUS-E programme (1993). We think that improvisation has something to do with an infinite choice.

Using it, our method is also rooted in folk music. A musical infinite sensation is stronger and more ecstatic when it appears in a single rhythm formula, a single ‘movimento’ a single base-formula. It was the main tool of ‘transcommunication’ in a primitive culture, and can be read in Maróthy and Batár’s study (1986:181). It is not unusual to speak about ‘infinite’ in connection with music because the creator of it belongs also to both ‘finite’ and ‘infinite,’ as it can be read by Kierkegaard: ‘man is a synthesis of infinite and infinite, the temporal and eternal of freedom and necessity’ (Vajda, 1993:27).

Our many-sided, compound material supposes the work of the subconscious mind which can also be found in folk music: teenage girls’ dances with the little ones in the village meadows (Kodály, 1951).

As seen above the components of our method are in an organic whole, and that is provided by using compound sound planes, a virtual polyphony, and many-sided activity balance between solo and community work. Sharing out the tasks at one exercise according to the ability of the participants means that we avoid frustration too.

Practice

Briefly, regarding the thesis points of the method, we offer a summary of the practical work which was carried out in the experimental groups. We started out from a compound material (sound-planes) which can be called ‘virtual’ polyphony. During the exercises, these quasi polyphonic movements contained some ordered and accidental (chaotic) elements, and therefore we had to look for some roots and patterns in music history and folk music to verify our implications.

We found accidental elements or quasi polyphony in the quodlibets of the 15th century folk music. Further accidental elements were found in the 11th and 12th century Gothic music (Leoninus and Perotinus). Bach also used quodlibets in his Goldberg Variations. Quodlibets lived on in Brahms’ and Hindemith’ music, too.

Finally we mention the Schoenbergian dodekaphony and the compound sound of electronic music (clusters) which have plenty of accidental elements. As polyphony is a very attractive form and higher level of inspiring musical pleasure, we used it, even if it contained ordered and unordered elements. Children cannot realize pure polyphony in their experimental age (6-8 years old) except in some very easy two parts exercises for singing or in a round. More complicated sounds can be developed only by help of more components (improvisations on percussion instruments, orchestra music, songs put together with ditties, poems, rhythm ostinatos, storytelling with background music, etc.).

How to build up a lesson?

As we have already mentioned the polyphonic movements create the core of our musical efforts. We have also taken some technique over from the so-called Kodály-method. We start lessons with some warming up singing. We usually do it with the help of the solfa system.

Children follow the hand-signs of a tone very easily. Normally we continue the lesson with some new material, e.g.: rhythm exercises, learning a new song which is necessary for the next lessons, or play some children game which is necessary for our many-sided work (compounded exercises). In the main part we apply some ditties or songs which are worked up into more sound-planes.
Our rhythm exercises consist of polyphonic movements too. E.g.: children contrasts two kind of rhythms – ta-ti-ti; ti-ti-ta – and practise it in two parts (divided groups), and then they change roles. We can combine the above mentioned rhythm exercise with a ditty (Forrai, 1974, no. 32). One part of the ditty can be put on „do”, the other part on „so”. So a simple two part music comes to being. We participate in some great work of the classical or romantic age, children can follow them with a so called cheironomy line (raising and lowering the hand according to the sound waves). This programme can also be in the main part of the lesson. This music listening can be combined with percussion instrument improvisations and conducted by a child conductor who uses both hands to direct the instrumentalists and follows the main flow of music.

The later part of the lesson can be a music listening. Children might make accounts on their imaginative visions or draw on the heard music. The drawings are always evaluated by the children, in some cases by the teacher. At the end of the lesson they always sing the new song which they have already committed to memory. Sometimes they chose the song they liked best during the earlier lessons. Finally they stand up and bid good-bye to the teacher. A lesson of this type can be modified in a thousand ways, we have given only one variety.

What is difference between our method and the traditional (Kodály method) programme?

- The tolerance of children while working together already in the first class.
- Provision of a greater choice in musical elements because of the polyphonic structure.
- Connection of the spoken and the musical language.
- Development of fantasy by song and instrumental improvisation, tale narrating in more parts.
- Connection of orchestral works and children’s music on the base of mood elements.
- Development of children’s valuation after child performance (dance, drawing, music interpretation, telling tales, etc.).
- Demonstration of the golden section rule in children songs by waving movements (without theory explanation)
- Nearing to contemporary music by using sung clusters, percussion instruments while improvising,
- Making use of subconscious energy: shaman drumming, Indian and other ritual dances.
- Building musical stillness and meditative state into musical process.
- Using catharsis reminiscence for acceptance of ‘good’ music, and developing a pleasant musical sphere at singing lessons.

How did we get closer to contemporary music?

We applied chiming instruments (percussion instruments) to orchestral music (machine music), to ditties, to children songs, to tale improvisations, etc. These kind of improvisations mixed with the main musical material produced very interesting sounds, which could be compared to those of the sounds of contemporary ones. Specifically, when we created sung clusters which were moved by the teacher or one of the child conductors (in dynamics, at the pitch and timbre) we received a similar sound which can be observed also in electronic music too. We applied these cluster formulas to narrate texts, ditties worked up with ostinato, poems, conducted orchestra music (machine one) and so on.

Children learned how to change timbre by taking some voices out of the cluster, they learned how to hold a compound sound, and could shift them up and down, even make them softer or louder. By doing these exercises they were not taken aback to hear some original clusters in a modern composition, even they accepted them with the greatest naturalness.

We mentioned earlier that our programme items are coherent. Now we refer to an other section of our research: The Aristotelian paradigm also speaks about joy which hides in stillness. Cluster, seemingly or virtually is a floating sound mass which does not move (like the white humming). It opens a meditative state, or in other words
another mind-state in children which helps them to call up information from the subconscious, and by means of that they get into contact with another dimension (infinite), and complete their own experiences of their ego with the experiences of their higher-self knowledge. This theory, although is hypothetical, would give an explanation as to why one gets into a euphoric state during catharsis.

That is why we think it is important to deal with clusters, with contemporary music, because they are nearer to being able to give answers to our world and the secrets of our lives. Finally this kind of education should be started in the early childhood as children need it.

Shaman drumming and ritual dances

We have to mention that there are repeated movements and sounds which accumulate the participants and get them into an ecstasy. (Hámori, 2001:42-43; Bagdy, 2002:66). We made use of this phenomenon in a child practice. Children organized an Indian dance.

They stood in a circle and started skipping to two drums like indians or natives. Sometimes they kept repeating one or two words on so-mi tones. The two drummers kept beating rhythms like the ones which used to be played on 'tam-tam' drums. The children enjoyed it very much and they got into a state of ecstasy or perhaps near this state. Supposedly their mind got into a state of trance and opened the subconscious regions (Csíkszentmihályi, 1997:103-105). This state of the brain takes place after a relaxed one where the impressions are chaotic like in a dream. It can be supposed that ecstasy also opens the mind to an infinite world like a meditative state does. We think that both phenomena would give a great joy to children as they call up their ancient remembrance of their lives (which hide in their genes) and by this inheritance they will be able to feel themselves as a complete ‘whole’ (Vajda, 1993).

A brief review of literature on the subject.

Our aim is to uncover some scientific points in relation of musical influence or musical effect on human being. First we mention the investigation of Barkóczi and Pléh (1972) which was carried out in more classes of a normal school and classes of special Kodály-programme. They took up many tests which mostly proved the priority of Kodály-classes. There was only one point in which their hypothesis did not meet the expectations. This was the connection of intelligence and creativity.

Namely, it turned out that these two do not have any influence over each other (Barkóczi & Pléh, 1972). They were taking into account many variables, but in spite of this, the question can be raised: were they sufficient? ‘Music also carries traces of history, culture and identity. Many forms of learning: listening, singing, representing, reproducing, creating, composing, improvising, thinking, moving, dancing, and playing.’ He goes on: ‘Moreover, when exercising the above mentioned forms of music learning, students often feel a sense of personal accomplishment, reward, enjoyment resulting in what is often called ‘flow.’’ (Csíkszentmihályi, 1997). Rainer Knappek examines the influence of music in many aspects. He criticises the constructivists, but falls into the same fault when he stresses the roles of musical constructions as the basic formulas of musical sensation (Knappek, 2002:103). It is interesting to read about Heinz Kohut’s theory (1957), cited by Emőke Bagdy (2002:66). As Kohut writes, the instinctive-self is able to experience the abyss of catharsis. The ego, while reminding suffered events, is able to solve them, the upper-self provides the real intellectual enjoyment. We share this theory with some corrections. We say that a real catharsis comes to being by the help of the subconscious region, and is realized by the regulating power of the upper-self. Most of the musicologists take over the social theory of Aristotle (the role and deliberating of ego, but forgetting about Aristotle, Kodály, Lukács, Csíkszentmihályi, Hámori, Kokas, who all speak about the richness of the soul after catharsis).

Catharsis is more than the function of the ego. Furthermore, the ego, the subconscious and the upper-self make a unit, a ‘whole’ and one cannot work without
the other. Hámori, connecting with creativity and musicality, stresses the power of ‘fantasy, imagination’ (Hámori, 2002:42), which we consider also very important in music teaching.

The last information we are giving is the freedom of the soul while making or listening to music (Kokas Klára, cited by Bagdy, 2002:65), which coincide with our theory, regarding the euphoric effect of a soul-liberation.

Measurements

To test children’s musical abilities we applied a test by Nagy-Pethő. Our aim was exclusively to check the musical level of children brought from kindergarten. The test was made for age-groups between 3-24 years. As our children aged between 6-9, we took out only four tasks from the test battery. The first task asked children to reproduce 25 intervals in an echo. The second task asked children to repeat back 8 tunes (2 to 4 beats). The third exercise (8 items) asked children to complete tunes of two beats (improvisation). They are evaluated as follows: A = the completion finishes on tonic, B = the tune goes on the same tonality but unfinished, C = The continuation is in another tonality or there is no answer. This exercise can be regarded as a kind of musical creativity test too. The four exercise gives some short tunes of two to four beats, and the children are to clap their rhythm back (18 tunes).

The final scores of the 4 tasks were as follows: Magyar I: 34.66%; Petőfi: 40.64%, and Lánchíd St.: 48.31%. According to the statistical calculations there were no significant deviations between the groups, so we disregarded deeper analysis.

As the values and the fact that there was nobody who had taken part in a special music course, we regarded the groups homogenous. We checked the children’s musical past (parents’ musical habits and preferences) which did not show any significant deviation (they preferred pop music in 85%). The test questions were composed by the author of this research.

The third was an attitude test made by Likert for which the questions were also composed by the author of this paper. The questions focused mostly on children’s attitude towards singing lessons, music listening and improvisations.

The first measurements were promising since children measured themselves with positive and negative values (between +7 and -7), and their positive values were in majority. The 25 questions scores can be itemized as follows:

a) Magyar Ilona primary school: 50.52% - 26.12%
b) Petőfi Sándor primary school: 59.99% - 25.96%
c) Lánchíd St. primary school: 72.42% - 7.74%

We applied control measurements in 2010, the details of which can be seen below.

We carried out an attitude test again but only with 15 questions since we did not want to load control groups with questions of the special programme of 2002-2005. We could now check the experimental groups’ attitude towards singing lessons and compare them with those from some-years ago. It happened with one group (7/a) which gave repeated test values after five years. Yet it produced much higher scores comparing to its control group. Supposedly some favourable musical attitude might also develop depending on the teacher. As we did not examine the phenomenon scientifically, we do not go into details.

In the test we contracted positive and negative values in one average between +7 to -7. Beside the group average there were three questions about classical music the scores of which can be seen listed after the average in the same line.

The questions: average and 4. question: In which art do you feel at home? 8. question: If you have to classify the following forms of musical art, how would you evaluate them? 12. question: Have you ever listened to classical music at home? If yes, how did you enjoy it?
1. Arany J. 1/a (experimental): 55.85%, (4) 51.72%, (8) 53.14%, (12) 34.42%.
2. Arany J. 1/c (control): 52.28%, (4) 37.93%, (8) 46.57%, (12) 41.71%.
3. Arany J. 2/b (experimental): 37.42%, (4) 38.46%, (8) 53.42%, (12) 48.14%.
4. Arany J. 2/c (control): 61.71%, (4) 27.58%, (8) 57.14%, (12) 42.14%.
5. Lánchíd 4/b (experimental): 59.14%, (4) 16%, (8) 54.85%, (12) 45.71%.
6. Arany J. 4/b (control): 41.85%, (4) 20.68%, (8) 15.85%, (12) 23%.
7. Lánchíd 4/a (experimental): 46.57%, (4) 37.72%, (8) 50%, (12) 57.28%.
9. Lánchíd 7/a (experimental): 33.42%, (4) 14.3%, (8) 4.2%, (12) 0.85%.
10. Lánchíd 7/b (control): 21.48%, (4) 0%, (8) -17.85%, (12) -14.28%.

The experimental groups in all test questions produced a higher average than the control groups, except the 3. group on the list (Arany J 2/b) which fell off comparing its parallel group. In spite of this it produced a higher average in the 4. question (37.03% to 24.13%). The 7/a (original experimental group) produced convincing better scores comparing to its parallel (7/b). Their remembrance of good music was still alive after five years.

The person of the pedagogue also plays a significant role in developing of the scores. It can be seen from the very high values of the first classes, and a bit worse achievement of the 2/b (third on the list), where the teacher was uncertain and nervous about her experimental work. Furthermore, the composition of the group regarding music abilities (clear intonation, musical remembrance) was a bit under the level. In these 4 values the scores met with the expectations composed in the hypothesis: the children in majority accepted good music and the importance of singing lessons.

Similar scores can be made out from the group averages. We discuss only a couple of them which were interesting during the process of the experiment. The average value of the experimental groups was 3.2%. It is higher than the 3.054% of the control groups. Here, the positive and negative preference values were contracted in an average. The 4. question, inquiring about the preference of students towards dance music, musical, operetta, opera and classical. The average of all these was 4.66% to advantage of the experimental group. It is a bit higher than the score of the control groups: 4.15%.

The 5. question wants to know the preference toward the teacher. The values shows that children of the control groups estimated their own teacher higher than the experimental groups did the experiment leader, who is an outer person of the school: 4.71% to 6.33%. There is a surprising deviation also in the averages concerning the choice of ‘serious’ music (question 8.). It is 3.01% comparing to the 1.7% of the control groups.

There is a smaller difference to advantage of the experimental groups in the 11. question which wanted to know if students listen folk music at home: 2.24% to 1.79%.

Our last comparison is connected with listening to ‘serious’ music at home (12. question). The values are similar to the part scores of an earlier diagram: 2.52% to 1.57% to advantage of the experimental groups.

Review of the hypothesis

In order to get a positive attitude for singing lessons and music the following methods and procedures were expedient, some of which can be regarded as new scientific results.

Polyphony, even in its virtual form, provides a higher musical pleasure than homophony. The increased number of components of polyphony enable children to chose the corresponding element for their creation (permutations). Children of a certain age (6-9) are able to create virtual polyphony, not to mention some very easy multi-part music, such as rounds’. Virtual polyphony includes some ordered and unordered (accidental) elements, the latter of which seem chaotic, but finally they are conducted and regulated by
outer (machine music), or inner motifs (individual emotion). The compound sound-planes (machine music with live voices – singing and texts narrated – percussion instruments) provide an enjoyable musical process which, due to occasional elements creating interesting sounds.

Children receive and accept this sound-mass in their conscious and subconscious mind, but as they are creating new sounds the joy of creation makes them tolerant to some elements or sounds which are not clear to them.

Children tolerate subconscious elements also in children’s games (The little ones’ participation in the elder ones’ games – children’s games in villages – Kodály, 1951).

Accidental or chaotic elements occur in great number in music history (Gothic music, Bach, Brahms, Hindemith, Schönberg, contemporary and electronic music).

Regarding chaotic, our experimental music is not without roots (examples of folk quodlibets, classical and contemporary music). Musical stillness as a kind of introspection appears in clusters (electronic music) and in our experimental practice which provides the experimental material for some contemplative or meta character.

Since our final aim was to open children towards music, we tried to make them reach catharsis. For the listening material we chose the most valued classical works, contemporary and electronic music, folk and pop music. All of this material was classified according to the deepest human emotions: sorrow, gaiety, humour, fear, etc.). Children’s interpretations after listening helped them to get closer to the core of understanding and following of the musical material.

The compound musical material enabled children to work individually and in groups. The tasks are shared out among children according to their musical abilities. Frustration is avoided as much as possible.

A new concept of catharsis, although it scientifically has not been proved, seems more than a hypothesis since the question of more dimensions arose with more significant philosophers (Platon, 1984; Kant, 2004; Hegel, 1940; Heidegger, 2001; Kierkegaard, 1993) as the existence of finite and infinite, or transcendence with Csíkszentmihályi (1997). Our hypothesis, as catharsis is an other mind-state, exceeds the classical concept of Aristotle (social sphere). We state that during catharsis one steps into other dimension, experiences euphoria because he sheds his finite troubles and enjoys freedom temporarily, finally retuning from infinite to finite enriched in soul and experiences (Aristotle, 1997; Lukács, 1969; Kodály, 2002; Csíkszentmihályi, 1997).

We must investigate the quality of catharsis as our end-goal which acquires pleasure in music while getting children in another mind-state. If it is acceptable in hypnosis, during sexual intercourse, ritual dances, drumming of shamans, and in many psychological cases, the question arises: why does it not exist in music perception?

Acknowledgements

Whether these applied methods and procedures increased children’s reception of music and preference for singing lessons, can be seen from the scores of Likert’s test. The three groups’ preference of the five towards the experimental programme was positive, and strengthened our standpoint as follows: the opinion of the singing teachers who were dealing with the groups in the following years, they firmly stated that these groups’ musical attitude and openness to musical exercises, including music writing and reading was much higher and wider than any of other class groups’.

Using the terms of higher-mind, upper-self, upper-mind, we meant the regulating function of the mind which harmonizes unconscious with conscious, and creates the ‘whole’ of the two. We agree with Bergson who stated that conscious and unconscious must not be separated, they complete each other (Ádám, 2004:25).

Considering the whole work, it is nothing other than an experiment for harmonizing the conscious with the unconscious in the teaching practice, and by so doing, it extends the area of the musical perception and understanding in the participants’ minds.
References